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Abstract
This paper considers the problem of assessing the distributional properties (normal-
ity and symmetry) of macroeconomic forecast errors of G7 countries for the purpose
of fan-chart modelling. Our results indicate that the assumption of symmetry of the
marginal distribution of forecast errors is reasonable, whereas the assumption of nor-
mality is not, making symmetric prediction intervals clearly preferable.
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Sieve bootstrap
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1 Introduction

Due to uncertainty surrounding point forecasts, there is a general consensus in the liter-
ature that a central bank maximizing the probability of achieving its goal should adopt
some form of density forecasting when conducting monetary policy (see Greenspan
2003; Haldane and Nelson 2012). Many central banks thus nowadays calculate and
officially publish prediction intervals for key economic variables (e.g., inflation and
output) in order to express and communicate perceived forecast risks with profession-
als and the general public.1Gaussian-like prediction bands have become a workhorse

1 Hammond et al. (2012) survey the (inflation) reports of 27 central banks, out of which 20 banks provide
prediction intervals officially.
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in fan-chart modelling (see, e.g., Bank of Canada, Sveriges Riksbank, Norges Bank,
Czech National Bank, European Central Bank, just to name a few). An alternative
approach, gaining increasing popularity in recent years, is to calculate prediction
bands that assume symmetry but not the stronger assumption of normality (see, e.g.,
Reserve Bank of Australia, National Bank of Slovakia).

The accuracy of both types of prediction bands critically depends on the validity of
the underlying distributional properties of forecast errors. In the former case, prediction
bands explicitly rely on an assumption that forecast errors are normally distributed,
whereas in the latter case on an assumption of symmetrically distributed errors. Clearly,
if the distributional assumption is violated, then the intervals are subject to systematic
misspecification. This fact can, in turn, give rise to economic policymisperception and
erroneous policy decisions. For example, based on the officially reported prediction
bands prior to the Great Recession period, most economists and central bankers did
not view price deflation and the zero lower bound of interest rates as a problem (see
Tetlow and Tulip 2008).

Unfortunately, many practitioners are reluctant to test for the distributional assump-
tions when calculating prediction intervals. We suspect that this reluctance has
something to do with the fact that both normality and symmetry tests with appro-
priate critical values valid under (weak) dependence of observations have not yet been
fully implemented in widely used software packages. Given these considerations, it is
desirable to provide reliable empirical evidence about the distributional properties of
macroeconomic forecasting errors which can then be used for fan-chart modelling.

Although some work on testing for normality of forecast errors has already been
done in the literature (see, e.g., Lahiri and Teigland 1987; Makridakis and Winkler
1989; Harvey and Newbold 2003; Reifschneider and Tulip 2007), the existing results
should be treated with caution.2 For example, Reifschneider and Tulip (2007) assess
normality of the US Federal Reserve System forecast errors using the skewness–
kurtosis test based on the asymptotic critical values derived for independently and
identically distributed (i.i.d.) observations. As a result, the test gives very likely
incorrect inference for dependent observations, including forecast errors where serial
correlation increases with the forecast horizon. Using the original skewness–kurtosis
test might be justified only for serially uncorrelated forecast errors but not in general.3

Harvey and Newbold (2003) assess normality of both individual and aggregated errors
from theUS Survey of Professional Forecasters based on formal testing for excess kur-
tosis with the Monte Carlo-based critical values. These may improve small-sample
properties of the test in the case of i.i.d. observations but fail in the case of serial
dependence which is clearly the case of empirically observed macroeconomic fore-
cast errors. At least to the best of our knowledge, no results for assessing symmetry
of the marginal law of macroeconomic forecast errors are available in the literature.

The main contribution of the paper is to provide reliable empirical evidence about
the distributional properties of key macroeconomic forecast errors which can then be
used for fan-chart modelling. We do so by assessing both normality and symmetry

2 The only exception, the author is aware of, is Reifschneider and Tulip (2019) where the appropriateMonte
Carlo critical values are used when testing for normality of the US forecast errors.
3 It is only fair to note that the authors are aware of this shortcoming (see Reifschneider and Tulip 2007,
pp. 19–20).
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of an international panel of survey-based macroeconomic forecast errors using the
test statistics based on empirical (robust) standardized cumulants with appropriate
critical values obtained via a sieve bootstrap. The dataset employed in our study
represents a unique data source which enables us to analyze forecast errors of two key
macroeconomic variables for G7 countries over a long time period, something which
is of practical importance for central banks and other forecasting institutions.4

The paper is organized as follows: The statement of the problem and the relevant test
statistics are discussed in Sect. 2. The bootstrap method to obtain appropriate critical
values is described in Sect. 3. An international dataset of forecast errors is discussed
in Sect. 4. The empirical results are presented in Sects. 5. Section 6 summarizes and
concludes.

2 Assumptions and test statistics

Suppose Xn = {X1, X2, . . . , Xn} are consecutive observations from a stationary
stochastic process X = {Xt }t∈Z satisfying

Xt − µ =
∞∑

j=0

ψ jεt− j , t ∈ Z, (1)

for some µ ∈ R, where {ψ j } j∈Z+ is a square-summable sequence of real numbers
(with ψ0 = 1) and {εt }t∈Z is a strictly stationary and ergodic sequence of real-valued
random variables with a finite fourth absolute moment such that E(εt |Ft−1) = 0
and E(ε2t |Ft−1) = s2 > 0 for all t , Ft−1 being the sigma-algebra generated by
{εt−1, εt−2, . . .}.

The first objective is to test the null hypothesis that the one-dimensional marginal
distribution F of X is Gaussian, that is

HN
0 : F = N (µ, σ 2). (2)

The alternative hypothesis is that distribution F is non-Gaussian.5 Testing whether
a sample of observations comes from a Gaussian distribution is a problem that has
attracted much attention over the years. Although many different test statistics have
been developed for this purpose (see Thode 2002 for a review), we focus on a test
for normality proposed by Bowman and Shenton (1975) and Jarque and Bera (1980,
1987) based on the empirical standardized third and fourth cumulants, exploiting the
fact that for a normal distribution all cumulants of order higher than the second are
zero. This classical skewness–kurtosis statistic has become arguably the most popular
test for normality in the literature and available in many statistical packages (e.g.,
EViews or MATLAB). The test statistic is given by

4 A MATLAB code is available to researchers upon request from the author.
5 Note that the null hypothesis can be alternatively stated as:HN

0 : F = N (0, σ 2) since the forecast errors
should be zero-mean stochastic processes. However, empirical evidence suggests that the forecast errors are
biased in small samples. The official forecasts are thus corrected for historically observed biases in forecast
errors. Therefore, we inspect the stochastic properties of the errors beyond the first moment in this study.
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Ẑ3
t

)2

+ n
24

(
1
n

n∑

t=1

Ẑ4
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where n−1 ∑n
t=1 Ẑ

3
t is the coefficient of skewness, n−1 ∑n

t=1 Ẑ
4
t is the coefficient of

kurtosis, and Ẑt = (Xt − X̄)/σ̂ with X̄ and σ̂ denoting sample mean and sample stan-
dard deviation calculated fromXn . It can be shown that for Gaussian independent and
identically distributed observations, TN is approximately χ2 distributed as n → ∞.
However, when applied to weakly dependent data, the test suffers from a serious size
distortion which increases with persistence, sample size, and complexity of stochastic
processes (see Psaradakis and Vávra 2019, pp. 9–19).

Bai andNg (2005) developed a related test statistic forweakly dependent data (based
on replacing constants 6 and 24 in (3) by respective long-run asymptotic variances of
the coefficients of skewness and kurtosis. These are constructed using a nonparametric
kernel estimator with a data-driven bandwidth). However, the finite sample properties
of the Bai–Ng test for normality are not satisfactory. The test suffers from a serious
size distortion and a power loss which significantly increases with dependence in data
(see Bai and Ng 2005, p. 57). Both distortions are of the magnitude making the test
unreliable unless a large sample of observations is available.

There are two reasons for the poor performance of the Bai–Ng-type statistic. First,
Bao (2013) showed that both sample skewness and kurtosis can be severely biased,
which causes a non-negligible size distortion in finite samples when relying on the
asymptotic distribution. The bias depends on higher-order cumulants as well as the
dependency structure in data. Second, although consistency of nonparametric long-run
variance estimators is well established in the literature (see Andrews 1991, Thm. 1),
it is highly inaccurate for weakly dependent data in small samples (see Müller 2014).

The second objective is to test the null hypothesis that the one-dimensionalmarginal
distribution F of X is symmetric around the center µ, that is

HS
0 : F(x − µ) = 1 − F(µ − x). (4)

The alternative hypothesis is that distribution F is asymmetric.6 However, testing for
marginal symmetry of weakly dependent data is even more peculiar and challenging
than testing for normality. In line with (3), a natural choice would be to implement a
test based on the coefficient of skewness n−1 ∑n

t=1 Ẑ
3
t . However, it is nowadays well

understood that the classical moment-basedmeasure of skewness is adversely affected
by leptokurtosis and outliers (see, e.g., Horsewell and Looney 1993; Rayner et al.
1995; Kim andWhite 2004). Therefore, robust measures of symmetry are particularly
useful when the underlying distribution is expected to be heavy-tailed or there are
extreme observations in the sample, a characteristic feature ofmany economic datasets
(see Balke and Fomby 1994 for empirical evidence). For this reason, we focus on a
test statistic proposed by Premaratne and Bera (2005) based on the Pearson type IV
family of distributions taking asymmetry and excess kurtosis into account explicitly.

6 Note that the null hypothesis can be alternatively stated as: HS
0 : F(x) = 1 − F(−x) since the forecast

errors should be zero-mean stochastic processes. See Footnote 4 for an explanation.
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This family is fairly large and includes, for example, normal and (skew-) Student
distributions, among others. The test statistic is given by

TS = n

(
1
n

n∑

t=1

tan−1(Ẑt )

)2

, (5)

where again Ẑt = (Xt − X̄)/σ̂ with X̄ and σ̂ denoting a sample mean and sam-
ple standard deviation calculated from Xn . The tan−1(·) function is odd, continuous,
and bounded (on the real line) which makes the test statistic robust to heavy-tailed
observations. The authors show that for independent and identically distributed obser-
vations, the (rescaled) version of the TS test statistic is asymptotically χ2 distributed
as n → ∞. Although the limiting distribution of the (rescaled) statistic TS can be
derived for weakly dependent data (see Chen and Lin 2008), the approximation might
be expected to perform poorly in small samples due to the inaccuracy of the long-run
variance estimators (see Müller 2014).

As a practical way of circumventing the problems mentioned above, we propose
to use an autoregressive sieve bootstrap procedure to obtain P-values and/or criti-
cal values for the moment-based test statistics. The principal advantage of the sieve
bootstrap is that it can be used to approximate the sampling properties of TN and
TS without knowledge or estimation of the dependence parameter in data. Moreover,
because bootstrap approximations are constructed from replicates of the test statistics
themselves, there is no need to derive analytically, nor to make assumptions about,
the appropriate norming factors for the distance statistics or their asymptotic null
distributions, something which is very convenient in practice.

3 Autoregressive sieve bootstrap approximation

The autoregressive sieve bootstrap is motivated by the observation that, under (1) and
an additional assumption of invertibility, X = {Xt }t∈Z admits the representation

∞∑

j=0

φ j (Xt− j − µ) = εt , t ∈ Z, (6)

for a square-summable sequence of real numbers {φ j } j∈Z+ (with φ0 = 1) such that
φ(z) = ∑∞

j=0 φ j z j for |z| < 1.7 The idea is to approximate (6) by a finite-order
autoregressive model and use this as the basis of a semi-parametric bootstrap scheme.
If the order of the autoregressive approximation is allowed to increase simultaneously
with n at an appropriate rate, the distribution of the process in (6) will be matched
asymptotically (see Kreiss 1992; Bühlmann 1997).

The bootstrap procedure used to approximate the sampling properties of the test
statistics TN and TS under the null hypotheses can be described in the following steps.

7 It is important to point out that, as discussed in Poskitt (2007), the autoregressive representation (6)
provides a meaningful approximation even if ψ(z) has zeros in the unit disk |z| < 1.
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(Only for notational simplicity, the test statistic is denoted as T . Any computational
differences between TN and TS are stated explicitly).

Step 1 Select an appropriate lag order p of anARmodel using theAkaike information
criterion (AIC), where the lag order is restricted by 0 ≤ p < 5 log10(n), where
n denotes the sample size. Note that other lag order selection criteria can be
used, but since the process {Xt } in (6) is not assumed to be of finite dimension,
the AIC is asymptotically efficient (see Shibata 1980).

Step 2 Obtain the unknown AR(p) model parameters (φ̂1, . . . , φ̂p) by the ordinary
least squares (OLS) method for the mean corrected series {Xt − X̄}nt=1, where
X̄ = n−1 ∑n

t=1 Xt is a sample average. In contrast to Bühlmann (1997), who
implemented the Yule–Walker (YW) estimator, we rely on the standard OLS
estimator. The main reason for doing so is that the OLS estimator produces
superior results as compared to the YW estimator (see Tjøstheim and Paulsen
1983; Paulsen and Tjøstheim 1985).

Step 3 Construct a sequence of the estimated residuals {ε̂t }nt=p+1 by the recursion

ε̂t = Xt − X̄ −
p∑

j=1

φ̂ j (Xt− j − X̄), t = p + 1, 2, . . . , n.

Step 4 By setting initial values X∗
−p+1 = · · · = X∗

0 = X̄ , generate bootstrap pseudo-
observations (X∗

1, . . . , X
∗
n+b) via the recursion (b is some positive integer)

X∗
t − X̄ =

p∑

j=1

φ̂ j (X∗
t− j − X̄)+ a∗

t , t = 1, 2, . . . , n + b, (7)

where the a∗
t ’s are i.i.d. random variables having mean zero and drawn from

the empirical distribution function which is selected based on the purpose of
the analysis:

• in the case of the null of normality (i.e.,HN
0 ), {a∗

t } are i.i.d. errors drawn from
N (0, ŝ2p), where ŝ

2 = (n − 2p − 1)−1 ∑n
t=p+1 ε̂2t ;

• in the case of the null of symmetry (i.e.,HS
0 ), {a∗

t } are i.i.d. errors drawn from
the symmetrized empirical distribution function of residuals given by

Ĝn(x) = (n − p)−1
n∑

t=p+1

I(ζt ε̂t ≤ x), for x ∈ R,

where {ε̂t } is a sequence of the estimated residuals from Step 3 and {ζt } is a
sequence of i.i.d. random variables drawn from the discrete uniform distribu-
tion on−1 and 1. Note that multiplying the estimated residuals by the uniform
random variable ζ in this form ensures that the marginal distribution of model
innovations is symmetric (see Berg et al. 2010).
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Thendiscard the initialb replicates to eliminate start-up effects (see Swanepoel
and VanWyk 1986). Define the bootstrap analogue of T by the plug-in rule as
T ∗ calculated using the appropriate test statisticwithX ∗

n = {X∗
1, X

∗
2, . . . , X

∗
n}

replacing Xn .

It is worth noting that, by requiring a∗
t in (7) to be either normally or sym-

metrically distributed,X ∗ is constructed in a way which reflects the particular
null hypothesis under test even though X may not satisfy it. This is important
for ensuring that the bootstrap test has reasonable power against departures
from the null (see Lehmann and Romano 2005, Sect. 15.6).

Step 5 Repeat Step 4 independently B times to obtain a collection of B replicates
{T ∗

1 , . . . , T ∗
B } of T ∗. The sampling distribution of T is then approximated

by the empirical distribution function associated with {T ∗
1 , . . . , T ∗

B }, that is
Ĥ∗(u) = B−1 ∑B

i=1 I(T ∗
i ≤ u), for u ∈ R. Then, a bootstrap test rejects the

null hypothesis at the significance level α if T > inf{q : Ĥ∗(q) ≥ 1 − α},
where T is a value of the test statistic obtained from the observed sample Xn .

Consistency of the sieve bootstrap estimator of the null sampling distribution of T
follows from Lemma 1, Theorem 2, and Remark 2 of Poskitt (2008) under a suitable
assumption about the rate of increase of p and the fractional parameter d (d = 0 in our

setup). More specifically, let ρ(H , H∗) =
√∫ 1

0 |H−1(u) − H∗−1(u)|2 du stand for
the Mallows–Wasserstein distance between the distribution function H of T and the
conditional distribution function H∗ of T ∗ givenXn (where g−1(u) = inf{x : g(x) ≥
u} for any non-decreasing function g).8 Then, if X satisfies (1), the distribution of ε0
is either Gaussian or symmetric, and p → ∞ and (log n)−ν p = O(1) as n → ∞ for
some ν ≥ 1, we have ρ(H , H∗) → 0 with probability 1 as n → ∞.

We conclude this section by remarking that the linear structure imposed by (1) and
(6)may arguably be considered as somewhat restrictive. However, the results of Bickel
and Bühlmann (1997) suggest that linearity may not be too onerous a requirement in
the sense that the closure (with respect to the total variationmetric) of the class of linear
processes is quite large; roughly speaking, for any stationary nonlinear process, there
exists another process in the closure of linear processes having identical sample paths
with probability exceeding 0.36. This suggests that the autoregressive sieve bootstrap
is likely to yield reasonably good approximations within a class of processes larger
than that associated with (1) or (6).

4 Macroeconomic forecasts errors

Since 1989, Consensus Economics Inc. (CE) has been conducting surveys which poll
around 10–30 fairly diverse economists and financial analysts in each country on their
views about the expected development of the selected macroeconomic and financial
variables. CE currently operates with more than 1000 economic variables from over

8 While H∗ is unknown, an approximation (of any desired accuracy) can be obtained by Monte Carlo
simulation as B → ∞.
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2848 M. Vávra

Fig. 1 Horizon-dependent
persistence, skewness, and
kurtosis of aggregate CE
forecast errors (final data)

85 countries. The CE output is often seen as a forecast benchmark by investment and
planning managers, as well as government and public sector institutions. In addition
to their annual (fixed-event) forecasts, the company provides also quarterly (fixed-
horizon) economic forecasts for one up to eight quarters ahead. The aggregate CE
forecast is a sample average of the forecasts provided by country participants for
each economic variable. These quarterly forecasts are updated every March, June,
September, and December.9

9 Theoretically, it would be more policy relevant to assess the distributional properties of the central banks’
forecast errors. Practically, it would be infeasible to compile a comparable dataset of central banks’ forecast
errors with the one employed in the study.
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Here we focus on assessing normality and symmetry of the marginal distribu-
tion of the aggregate CE forecast errors for the real GDP growth rate (denoted
as GDP) and the inflation rate (denoted as CPI) of G7 countries (the USA,
Japan, Germany, France, the UK, Italy, Canada). Forecasts of both economic
variables are reported in the form of year-on-year percentage changes.10 The fore-
cast horizon of variables under consideration is from one quarter to six quarters
ahead.

The aggregate CE forecast error is calculated as: Xt (h) = Yt+h − Ŷt (h), where
Yt+h denotes the realization of a given variable (e.g., GDP) at t + h and Ŷt (h) denotes
the aggregate conditional forecast (a sample average of country participants’ fore-
casts) made at time t for h quarters ahead. (The index h is sometimes omitted for
the notational simplicity.) Since macroeconomic variables are subject to (sometimes
substantial) revisions, it is far from clear which version of the realization should be
actually used for our analysis. On the one hand, final data can be preferred since
they represent the most accurate data available to researchers. On the other hand,
final data are available with a considerable lag taking even several years and thus
first-release data might be more relevant for real-time analysis (see Aruoba 2008 for
details about statistical revisions). For these reasons, we examine the distributional
properties of forecasts errors calculated using both first-release (unrevised) and final
(fully revised) macroeconomic data. The dataset of international forecast errors is a
balanced panel spanning the period Q4 1994–Q3 2015 in the case of final data (Q2
1999–Q3 2015 in the case of first-release data). Revised actuals for all macroeco-
nomic series are obtained from the Real-Time OECD Database (visit https://stats.
oecd.org).

The aggregate CE forecast errors of both macroeconomic variables for the
selected horizons h = 1, 3, 5 are depicted in Fig. 2 in Appendix A. Some
comments about the stochastic properties of the errors are in order. A char-
acteristic feature of both GDP and CPI errors is their high persistence which
increases with the forecast horizon h—see Fig. 1a where averages of the first-
order autocorrelation coefficients of forecast errors calculated over individual
countries are depicted. The figure clearly demonstrates that using test statistics
based on the assumption of serially uncorrelated observations (as in studies cited
earlier) would provide very likely misleading inference about the distributional
properties of forecast errors. The interested reader is referred to Psaradakis and
Vávra (2019, pp. 9–19) for Monte Carlo evidence. As for higher moments, rel-
evant for testing normality, GDP forecast errors clearly exhibit higher degree
of non-normality in terms of both sample skewness and kurtosis—see Fig. 1b,
c.

10 Note that quarter-on-quarter percentage changes of economic variables are not considered here since
they are available only for GDP but not for CPI.
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5 Empirical results

In this section, we assess normality and symmetry of the marginal law of survey-based
macroeconomic forecast errors using the above-described TN and TS test statistics. It
is shown in Appendix B that the moment-based tests with appropriate critical values
obtained via the sieve bootstrap perform very well under both the null and alternative
hypotheses even in sample sizes encountering macroeconomic applications. Recall
that, consistently with a notation introduced in Sect. 2, Xn = {X1, . . . , Xn} denotes
a sample of the aggregate CE forecast errors for each variable (CPI and GDP), each
forecast horizon (h = 1, . . . , 6), and each data release (final data and first-release
data). A sample mean and standard deviation calculated from the sample Xn are
used as estimators of location µ and scale σ . (Both estimators are perfectly justifi-
able under the null hypothesis of normality.) The bootstrap P-values of the distance
tests are reported in Tables 1, 2, 3, and 4. These are computed from 1,000 bootstrap
replications with the data-dependent sieve order p determined using the AIC over
1 ≤ p < 5 log10(n).

Normality The null hypothesis of normality is rejected (at the conventional 5%
significance level) in around 75% (25%) of the GDP (CPI) forecast errors using
the final data. A markedly higher rejection rate of GDP errors can be explained
by higher degree of non-normality in terms of sample skewness and kurtosis as
compared to CPI (see Fig. 1). Two interesting conclusions emerge when focus-
ing on normality over the forecast horizon h and individual countries. First, the
null of normality of GDP errors is rejected for all countries. What is more, in
five out of seven countries (i.e., UK, JP, DE, FR, and IT), the null is rejected for
at least 5 out of 6 forecast horizons. Second, normality of CPI errors is rejected
mainly for two countries only (US and JP). It is worth remarking here that no sig-
nificant differences between rejection rates for the final and first-release data are
observed.

Symmetry Noticeably different results are obtained when testing for the null
of symmetry of the marginal distribution of forecast errors. The null of sym-
metry is rejected (again at the 5% significance level) only in 15% (10%) of
the GDP (CPI) forecast errors series using the final data. Interestingly, in most
of the cases, the null is rejected for the UK and FR forecast errors only. As
in the previous case of normality, no significant differences between rejection
rates for the final and first-release data are observed. Putting the normality and
symmetry results together, we may conclude that when the null normality is
rejected, it is mainly due to the presence of excess kurtosis in the forecast
errors.

Implications Our results indicate that the assumption of symmetry of the marginal
distribution of forecast errors is reasonable, whereas the assumption of normality is
not in general, making symmetric prediction intervals clearly preferable. Although the
prediction bands that assume symmetry of the marginal distribution of errors might
be calculated in different ways, using sample quantiles of the estimated marginal

123

Author's personal copy



Assessing distributional properties of forecast... 2851

distribution of (symmetrized) forecast errors seems to be computationally the most
attractive approach (see Tulip and Wallace 2012 for details).11 Unlike the tradi-
tional Gaussian approach (based on the root-mean-squared errors calculated from
historical errors and the standard normal critical values), the quantile approach is
more general (and also nests Gaussian prediction bands as a special case) and con-
sistent for weakly dependent forecast errors under mild regularity conditions (see
Sen 1968; Lee 1998; Psaradakis and Vávra 2015 for the asymptotic properties of
sample quantiles). Nevertheless, it is important to point out that the behavior of
sample quantiles lying in the tails of the error distribution might be erratic due
to a limited number of representative observations. In such cases, quantile esti-
mates might be improved using a bootstrap method (see, e.g., Sharipov and Wendler
2013).

6 Conclusion

The distributional properties of the forecast errors play a crucial role in cal-
culating reliable prediction intervals. This paper has considered the problem of
testing for both normality and asymmetry of survey-based macroeconomic fore-
cast errors using the distance-based statistics with the critical values obtained via
the sieve bootstrap. Our results indicate that the assumption of symmetry of the
marginal distribution of forecast errors is reasonable, whereas the assumption of
normality is not in general, making symmetric prediction intervals clearly prefer-
able.

A Figures and Tables

See Fig. 2 and Tables 1, 2, 3, and 4.

11 An alternative way could be to use a Student t distribution with the estimated degrees of freedom which
are very likely to be horizon/variable dependent as implied from Fig. 1c.
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Fig. 2 Aggregate CE forecast
errors (final data)
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Table 1 P-values of normality
test TN : GDP

Release Country Horizon
1 2 3 4 5 6

Final US 0.59 0.04 0.09 0.53 0.18 0.06

UK 0.01 0.00 0.00 0.00 0.00 0.00

JP 0.79 0.00 0.00 0.00 0.00 0.00

DE 0.58 0.00 0.00 0.00 0.00 0.00

FR 0.01 0.00 0.00 0.00 0.00 0.00

IT 0.02 0.00 0.00 0.00 0.00 0.00

CA 0.78 0.28 0.58 0.04 0.01 0.01

First US 0.50 0.05 0.00 0.00 0.00 0.00

UK 0.09 0.02 0.00 0.00 0.00 0.00

JP 0.04 0.00 0.00 0.00 0.00 0.00

DE 0.00 0.00 0.00 0.00 0.00 0.00

FR 0.68 0.01 0.00 0.00 0.00 0.00

IT 0.00 0.00 0.00 0.00 0.00 0.00

CA 0.06 0.17 0.02 0.01 0.00 0.00

Table 2 P-values of normality
test TN : CPI

Release Country Horizon
1 2 3 4 5 6

Final US 0.00 0.00 0.00 0.01 0.07 0.49

UK 0.07 0.17 0.10 0.06 0.05 0.06

JP 0.82 0.77 0.15 0.04 0.01 0.02

DE 0.04 0.39 0.87 0.91 0.75 0.71

FR 0.31 0.70 0.21 0.59 0.81 0.70

IT 0.10 0.29 0.74 0.74 0.59 0.40

CA 0.00 0.64 0.49 0.29 0.16 0.65

First US 0.00 0.01 0.00 0.00 0.01 0.06

UK 0.08 0.71 0.45 0.52 0.72 0.87

JP 0.57 0.80 0.08 0.05 0.01 0.05

DE 0.09 0.77 0.50 0.59 0.51 0.52

FR 0.13 0.13 0.02 0.06 0.22 0.43

IT 0.02 0.32 0.35 0.40 0.41 0.41

CA 0.00 0.73 0.41 0.39 0.18 0.67

B Simulation study

In this section, we present and discuss the results of a simulation study examining the
small-sample properties of the normality and symmetry tests under different patterns
of dependence by considering artificial data generated according to the following
ARMA models

M1: Xt = 0.5Xt−1 + εt ,
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Table 3 P-values of symmetry
test TS : GDP

Release Country Horizon
1 2 3 4 5 6

Final US 0.10 0.33 0.84 0.73 0.89 0.78

UK 0.27 0.23 0.11 0.06 0.03 0.01

JP 0.66 0.27 0.26 0.31 0.28 0.24

DE 0.25 1.00 0.75 0.69 0.67 0.59

FR 0.06 0.03 0.03 0.02 0.04 0.06

IT 0.44 0.14 0.13 0.07 0.06 0.08

CA 0.51 0.27 0.60 0.89 0.64 0.52

First US 0.25 0.53 0.65 0.74 0.51 0.13

UK 0.10 0.10 0.09 0.01 0.01 0.01

JP 0.38 0.12 0.38 0.51 0.38 0.19

DE 0.97 0.41 0.22 0.17 0.26 0.29

FR 0.79 0.73 0.11 0.02 0.01 0.01

IT 0.52 0.32 0.32 0.13 0.05 0.09

CA 0.10 0.41 0.68 0.76 0.12 0.03

Table 4 P-values of symmetry
test TS : CPI

Release Country Horizon
1 2 3 4 5 6

Final US 0.60 0.21 0.44 0.80 0.96 0.83

UK 0.04 0.92 0.15 0.06 0.04 0.05

JP 0.57 0.73 0.79 0.86 0.38 0.46

DE 0.00 0.78 0.48 0.60 0.51 0.71

FR 0.85 0.89 0.61 0.54 0.56 0.57

IT 0.38 0.41 0.93 0.71 0.59 0.51

CA 0.90 0.61 0.63 0.85 0.93 0.44

First US 0.22 0.17 0.15 0.27 0.35 0.51

UK 0.11 0.73 0.70 0.51 0.41 0.49

JP 0.79 0.86 0.95 0.83 0.38 0.37

DE 0.81 0.25 0.48 0.60 0.45 0.57

FR 0.57 0.35 0.16 0.11 0.10 0.17

IT 0.63 0.38 0.42 0.28 0.25 0.32

CA 0.68 0.95 0.90 0.85 0.68 0.75

M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt ,
M3: Xt = 0.6Xt−1 + 0.3εt−1 + εt .

Here, and throughout this section, {εt } are i.i.d. random variables, the common dis-
tribution of which is either standard normal (labelled N) or generalized lambda with
quantile function Q(w) = λ1+ (1/λ2){wλ3 − (1−w)λ4}, 0 < w < 1, standardized to
have zero mean and unit variance (see Ramberg and Schmeiser 1974). The parameter
values of the generalized lambda distribution used in the experiments are taken from
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Table 5 Innovation distributions

λ1 λ2 λ3 λ4 Skewness Kurtosis

N – – – – 0.0 3.0

S1 0.000000 − 0.397912 − 0.160000 − 0.160000 0.0 11.6

S2 0.000000 − 1.000000 − 0.240000 − 0.240000 0.0 126.0

A1 0.000000 − 1.000000 − 0.007500 − 0.030000 1.5 7.5

A2 0.000000 − 1.000000 − 0.100900 − 0.180200 2.0 21.1

A3 0.000000 − 1.000000 − 0.001000 − 0.130000 3.2 23.8

Table 6 Empirical rejection frequencies of tests: AIC

Sample Distribution TN TS
M1 M2 M3 M1 M2 M3

n = 100 N 0.05 0.04 0.05 0.05 0.04 0.05

S1 0.62 0.52 0.38 0.05 0.05 0.06

S2 0.75 0.65 0.53 0.06 0.06 0.07

A1 0.82 0.68 0.51 0.71 0.55 0.33

A2 0.76 0.68 0.53 0.34 0.26 0.22

A3 1.00 0.97 0.89 0.97 0.89 0.71

n = 200 N 0.05 0.06 0.05 0.04 0.04 0.04

S1 0.85 0.74 0.52 0.04 0.05 0.05

S2 0.94 0.88 0.72 0.04 0.06 0.05

A1 0.98 0.95 0.79 0.96 0.90 0.65

A2 0.95 0.90 0.76 0.61 0.54 0.41

A3 1.00 1.00 0.99 1.00 0.99 0.97

Bai and Ng (2005) and can be found in Table 5, along with the corresponding coef-
ficients of skewness and kurtosis; the distributions N, S1, S2 are symmetric, whereas
A1, A2, A3 are asymmetric.

For each design point, 1000 independent realizations of {Xt } of length n + 100,
with n ∈ {100, 200} (as representative samples for macroeconomic applications), are
generated.12 The first 100 data points of each realization are then discarded in order
to eliminate start-up effects, and the remaining n data points are used to compute
the value of the TN and TS test statistics. In the case of bootstrap tests, the order of
the autoregressive sieve is determined by minimizing the AIC in the range 1 ≤ p <

5 log10(n), while the number of bootstrap replications is B = 499. We note that using
a larger number of bootstrap replications did not change the results substantially (see
Davison and Hinkley 1997, pp. 155–156, for an explanation).

The Monte Carlo rejection frequencies of the test statistics at 5% significance
level are reported in Table 6. The null rejection probabilities of the tests are gener-
ally insignificantly different from the nominal level across all relevant DGPs. Their

12 The Monte Carlo results for different sample sizes are available from the author upon request.
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Table 7 Empirical rejection frequencies of tests: BIC

Sample Distribution TN TS
M1 M2 M3 M1 M2 M3

n = 100 N 0.04 0.04 0.06 0.05 0.06 0.06

S1 0.64 0.54 0.37 0.06 0.08 0.07

S2 0.78 0.69 0.52 0.05 0.08 0.07

A1 0.83 0.74 0.52 0.71 0.60 0.35

A2 0.78 0.68 0.51 0.34 0.29 0.24

A3 0.99 0.99 0.89 0.97 0.89 0.67

n = 200 N 0.06 0.06 0.05 0.06 0.06 0.05

S1 0.84 0.78 0.54 0.05 0.07 0.06

S2 0.95 0.90 0.74 0.05 0.07 0.06

A1 0.99 0.96 0.79 0.97 0.90 0.63

A2 0.94 0.91 0.75 0.61 0.54 0.36

A3 1.00 1.00 1.00 1.00 1.00 0.96

rejection frequencies improve with both the sample size and non-normality in the dis-
tribution of innovations, although not uniformly (compare the results for A1 and A2).
To assess the sensitivity of results with respect to the method used to determine the
order of the autoregressive sieve, we consider selecting the latter byminimizing BIC in
addition to AIC. The rejection frequencies are reported in Table 7. It is clear that there
is little to choose between AIC and BIC, the rejection frequencies not being notably
different across the two criteria for any given combination of noise distribution and
the sample size n. It is worth noting that results from experiments based on artificial
time series confirm the robustness of the properties of the test procedure with respect
to the choice of order selection criterion.
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